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 ABSTRACT 

An infected female mosquito bite is how the virus that causes dengue fever is spread to humans. In 
this research, a mathematical model that includes vector control and human susceptibility awareness is 
suggested to describe the transmission of the two strains of Dengue virus between humans and mosquitoes. 
This study aims to establish and analyze a mathematical model of dengue fever with the application of 
optimal control. The results of this study are expected to be able to provide information to the government, 
as well as material for further research. The method used to solve the above problem is to use the Pontryagin 
maximum principle method, which is then solved by the fourth-order runge kutta numerical method. The 
simulations carried out showed that the population of susceptible and infected human individuals decreased 
with optimal control, while the population of recovered individuals increased after optimal control was 
given. In the mosquito population, after being given optimal control, the mosquitoes capable of being 
infected (susceptible) and the mosquitoes infected with the dengue virus (infected) decreased compared to 
before the optimal control was given. This shows that the optimal control works well on the mathematical 
model of dengue fever. Theoretical results and numerical simulations indicate that measures to increase 
awareness of the self-protection of infected and susceptible humans should be taken and mosquito control 
measures are needed to prevent transmission of Dengue virus from mosquitoes to humans. 
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1 INTRODUCTION 

Aedes aegypti and Aedes albopictus, which are known as the primary vectors of 
dengue (L. Esteva & Vargas, 2003; Lourdes Esteva & Vargas, 1999), are two species of 
mosquitoes that can carry the virus that causes dengue fever and bite humans. Because 
of the significant morbidity and mortality associated with dengue fever, which occurs in 
the majority of tropical, subtropical, and temperate countries, the disease has recently 
gained international attention as a public health concern. High fever, a frontal headache, 
discomfort behind the eyes, joint problems, nausea, vomiting, and other symptoms are 
some of the signs and symptoms of this illness (Derouich & Boutayeb, 2006). According 
to a recent statistics, there are 390 million Dengue outbreaks each year (95% credible 
interval: 284-528 million), of which 96 million (range: 67–136 million) show clinical 
symptoms (of any illness severity) (Bhatt et al., 2013). 
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How to prevent and manage the spread of this disease has been a hot problem from 
many perspectives, including medical scientists and mathematicians, as more than one-
third of the world's population lives in places at risk for infection with the Dengue virus 
(Centers for Disease Control and Prevention). To understand the dynamic behaviors of 
dengue transmission, numerous mathematical models have been put forth thus far. As 
an overview, Esteva and Vargas (Lourdes Esteva & Vargas, 1999) proposed a SIR model 
for the transmission of dengue fever with variable human population size. They 
discovered three threshold parameters that regulate the existence of the behaviors of the 
total number of infected humans, the growth of the human population size, and the 
endemic proportion equilibrium. Considered the effect of vector-control techniques on 
the occurrence of the Dengue virus in humans in Amaku et al. (Amaku et al., 2014). A 
deterministic model of the dynamics of dengue fever transmission proposed by Garba et 
al. (Garba et al., 2008) showed that the disease-free equilibrium exists and is locally 
asymptotically stable when the fundamental reproduction number is smaller than unity. 
In addition, authors covered the reverse bifurcation phenomenon. Blayneh et al. (Blayneh 
et al., 2009), Cai and Li (Cai & Li, 2010), Cai et al. (Cai et al., 2017), Esteva and Vargas 
(Lourdes Esteva & Vargas, 1998, 2000), Rodrigues et al. (Rodrigues et al., 2010), and the 
research in this area is still ongoing, all provide additional examples. 

This work examines the creation of a mathematical model of dengue disease with 
optimal control based on the justification provided. An intervention strategy to reduce 
mosquito populations by spraying adult mosquitoes to kill them, using barrier 
techniques like curtains, avoiding places where mosquitoes congregate, and wearing 
long sleeved clothing to increase the level of protection of vulnerable humans is 
suggested as the best control in this study. With the use of optimum control, this work 
intends to identify and examine the mathematical model of dengue hemorrhagic fever. 
Whereas the goal of this optimal control is to lower both the number of infected people 
and the number of Aedes aegypti mosquitoes. The findings of this study are anticipated 
to offer the government with knowledge and inspiration for additional research. 

The following sections serve as the structure for this article. Section 2 explains 
dynamic model of dengue virus. Section 3 discusses the mathematical representation of 
dengue disease using optimal control and its properties. Then the numerical simulation 
and discussion explain in Section 4. The final section includes some conclusion of this 
research. 

 

2 DENGUE EPIDEMIC MODEL  

The underlying presumptions were as follows, one of the serotypes of the dengue 
virus can be transmitted between the host and the vector in a mathematical model called 
SIR random. The model is a form of SIR model since it is based on the disease's eliminated 
traits, infection, and susceptibility. The human population (𝑁ℎ) and the vector population 
are the two separate sorts of populations on which the model is developed (𝑁𝑣). The 
human population 𝑁ℎ is further broken down into three groups: those who may have the 
dengue virus but are still susceptible to infection 𝑋ℎ (also known as susceptible), those 
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who have the dengue fever 𝑌ℎ (also known as infected), and those who have recovered 
from the illness 𝑅ℎ (removed). Similar to this, mosquitoes that are susceptible to infection 
(𝑋𝑣) and mosquitoes that are infected with the dengue virus (𝑁𝑣) make up the two 
categories that make up the vector population of mosquitoes (infected, 𝑌𝑣). The dengue 
vaccine is now thought to offer everlasting immunity. Because of this, we hypothesized 
that following a successful vaccine, the vulnerable population would migrate to the 
recovered population. The proposed model assumes non-negative real numbers for all of 
its parameters and state variables. For the purpose of the noise effect, the functions 
𝐵1(𝑡), 𝐵2(𝑡), 𝐵3(𝑡), whereas 1, 2, 3 > 0 are taken to be the equivalent intensities of the 
white noise. The fundamental axiom 𝐵1(0) = 𝐵2(0) = 𝐵3(0) = 0. The person who 
recovers from the illness will always be immune to it. 

The mathematical model SIR random can replicate the spread of serotypes, one of 
the dengue viruses, from the vector to the host. The model is actually a form of SIR model 
because it is based on susceptibility, infection, and eliminated aspects of the disease. The 
human population (𝑁ℎ) and the vector population are the two separate sorts of 
populations on which the model is built (𝑁𝑣). The human population 𝑁ℎ is further broken 
down into three groups: those who may already have the dengue virus but are still 
susceptible to infection 𝑋ℎ (also known as susceptible), those who have the dengue fever 
𝑌ℎ (infected), and those who have recovered from the illness 𝑅ℎ (removed) (Din et al., 
2021). In this case, the governing system of equations can be written as follows: 

𝑑𝑋ℎ(𝑡)

𝑑𝑡
= Λ −

𝛽1𝑋ℎ(𝑡)𝑌ℎ(𝑡)+𝛽2𝑋ℎ(𝑡)𝑌𝑣(𝑡)

𝑁ℎ
− 𝜇0𝑋ℎ(𝑡) (1) 

𝑑𝑌ℎ(𝑡)

𝑑𝑡
=

𝛽1𝑋ℎ(𝑡)𝑌ℎ(𝑡)+𝛽2𝑋ℎ(𝑡)𝑌𝑣(𝑡)

𝑁ℎ
− (𝜇0 + 𝜇2 + 𝛾1)𝑌ℎ(𝑡) (2) 

𝑑𝑅ℎ(𝑡)

𝑑𝑡
= 𝛾1𝑌ℎ(𝑡) − 𝜇0𝑅ℎ(𝑡) (3) 

𝑑𝑋𝑣(𝑡)

𝑑𝑡
= 𝜆 −

𝛽3𝑋𝑣(𝑡)𝑌ℎ(𝑡)

𝑁ℎ
− 𝜇1𝑋𝑣(𝑡)

 
(4) 

𝑑𝑌𝑣(𝑡)

𝑑𝑡
=

𝛽3𝑋𝑣(𝑡)𝑌ℎ(𝑡)

𝑁ℎ
− 𝜇1𝑌𝑣(𝑡)

 
(5)

 
     

3 OPTIMAL CONTROL PROBLEM 

The best strategies for preventing the spread of the dengue virus are developed 
using optimal control techniques. In this section, we provide an optimal problem for 
model (1)-(5) to determine a good balance between the least number of total mosquitoes, 
and campaign costs, the infected individuals, also the susceptible individuals. The levels 
of disease knowledge in the host population and efficient vector control are seen as a 
control variable to lessen or even abolish the illness. 

The sensitivity analysis performed is used in this section to modify the social 
hierarchy-structured model (1)-(5) to add the next two intervention options. 
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i. 𝑢1(𝑡) : This control variable is an intervention strategy to reduce the mosquito 
population by spraying adult mosquitoes to kill them. 

ii. 𝑢2(𝑡) : The suggested method involves employing barrier techniques like curtains 
and avoiding spots where mosquitoes are swarming and long sleeved garments 
to increase the degree of susceptible humans' self-protection. 

The mathematical model of the spread of the dengue virus by providing optimal 
control is given by the following system: 

𝑑𝑋ℎ(𝑡)

𝑑𝑡
= Λ −

𝛽1𝑋ℎ(𝑡)𝑌ℎ(𝑡)+𝛽2𝑋ℎ(𝑡)𝑌𝑣(𝑡)

𝑁ℎ
− 𝜇0𝑋ℎ(𝑡) − 𝑢1𝑋ℎ(𝑡) (6) 

𝑑𝑌ℎ(𝑡)

𝑑𝑡
=

𝛽1𝑋ℎ(𝑡)𝑌ℎ(𝑡)+𝛽2𝑋ℎ(𝑡)𝑌𝑣(𝑡)

𝑁ℎ
− (𝜇0 + 𝜇2 + 𝛾1)𝑌ℎ(𝑡) (7) 

𝑑𝑅ℎ(𝑡)

𝑑𝑡
= 𝛾1𝑌ℎ(𝑡) − 𝜇0𝑅ℎ(𝑡) + 𝑢1𝑋ℎ(𝑡) (8) 

𝑑𝑋𝑣(𝑡)

𝑑𝑡
= 𝜆 −

𝛽3𝑋𝑣(𝑡)𝑌ℎ(𝑡)

𝑁ℎ
− 𝜇1𝑋𝑣(𝑡) − 𝑢2𝑋𝑣(𝑡)

 
(9) 

𝑑𝑌𝑣(𝑡)

𝑑𝑡
=

𝛽3𝑋𝑣(𝑡)𝑌ℎ(𝑡)

𝑁ℎ
− 𝜇1𝑌𝑣(𝑡) − 𝑢2𝑋𝑣(𝑡) (10) 

In order to decrease or eradicate the numbers of both infected populations and 
mosquitoes, the time-dependent control variables 𝑢𝑖(𝑡), 𝑖 = 1, 2, are included. The cost 
functional listed below is utilized as a result. 

min 𝐽 (𝑢1, 𝑢2) = ∫ (𝐴1𝑋ℎ + 𝐴2𝑌ℎ +
𝐴3

2
𝑢1

2 +
𝐴4

2
𝑢2

2)
𝑡𝑒𝑛𝑑

0
𝑑𝑡

 
(11) 

which 𝐴1, 𝐴2, 𝐴3, 𝐴4 are the balancing and positive weight constants for reducing the 
function. The nonlinearity of the costs associated with each intervention strategy required 
to reduce the objective functional deficit is described by each of the quadratic equations 

𝑢𝑖
2 (Ademosu et al., 2021; Adepoju & Olaniyi, 2021; Asamoah et al., 2020; Goswami & 

Shanmukha, 2020; Khan et al., 2021). Tf indicates that the intervention measures should 
be implemented for the last time. In order to solve the minimization issue of the type, one 
only needs to find an optimal control 𝑢 = (𝑢𝑖),   𝑖 = 1, 2. Utilizing Pontryagin's maximal 
principle (Ilmayasinta et al., 2022; Ilmayasinta & Purnawan, 2021; Mardlijah et al., 2018, 
2019; Pontryagin, 1986), the minimization issue (11) is solved using optimal control 
theory. 

 

3.1 Optimal control characterization 

It's critical to demonstrate the presence of the optimal control quadruple u that 
found the solution to the minimization problem (11). It is given beneath. 

𝐻 = 𝐴1𝑋ℎ + 𝐴2𝑌ℎ +
𝐴3

2
𝑢1

2 +
𝐴4

2
𝑢2

2 + 𝜉1 (Λ −
𝛽1𝑋ℎ(𝑡)𝑌ℎ(𝑡)+𝛽2𝑋ℎ(𝑡)𝑌𝑣(𝑡)

𝑁ℎ
− 𝜇0𝑋ℎ(𝑡) −

𝑢1𝑋ℎ(𝑡)) + 𝜉2 (
𝛽1𝑋ℎ(𝑡)𝑌ℎ(𝑡)+𝛽2𝑋ℎ(𝑡)𝑌𝑣(𝑡)

𝑁ℎ
− (𝜇0 + 𝜇2 + 𝛾1)𝑌ℎ(𝑡)) + 𝜉3(𝛾1𝑌ℎ(𝑡) −
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𝜇0𝑅ℎ(𝑡) + 𝑢1𝑋ℎ(𝑡)) + 𝜉4 (𝜆 −
𝛽3𝑋𝑣(𝑡)𝑌ℎ(𝑡)

𝑁ℎ
− 𝜇1𝑋𝑣(𝑡) − 𝑢2𝑋𝑣(𝑡)) + 𝜉5 (

𝛽3𝑋𝑣(𝑡)𝑌ℎ(𝑡)

𝑁ℎ
−

𝜇1𝑌𝑣(𝑡) − 𝑢2𝑋𝑣(𝑡))
 

(12) 

where 𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5 are, respectively, the adjoint variables linked to the state variables 
𝑋ℎ, 𝑌ℎ, 𝑅ℎ, 𝑋𝑣, 𝑌𝑣. The next result illustrates both the presence of the adjoint variables and 
the control characterisation. 

Theorem. There are adjoint variables 𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5 that fulfill for adjoint system of 
certain form, provided an optimal control (𝑢1

∗, 𝑢2
∗) that minimizes the objective functional 

(11).  

𝜉1̇ = −(1 − 𝜉1(𝛽1𝑌ℎ(𝑡) + 𝛽2𝑌𝑣(𝑡) + 𝜇 + 𝑢1) + 𝜉2(𝛽1𝑌ℎ(𝑡) + 𝛽2𝑌𝑣(𝑡)) + 𝜉3𝑢1)
 

(13) 

𝜉2̇ = − (1 − 𝜉1(𝛽1𝑋ℎ(𝑡)) + 𝜉2(𝛽1𝑋ℎ(𝑡) − (𝜇0 + 𝜇2 + 𝛾1)) + 𝜉3𝛾1 + 𝜉4(𝛽3𝑋𝑣(𝑡)) +

𝜉5(𝛽3𝑋𝑣(𝑡)))
 

(14) 

𝜉3̇ = −(−𝜉3𝜇0)
 

(15) 

𝜉4̇ = − ((−𝜉4(𝛽3𝑌ℎ(𝑡) + 𝜇1 + 𝑢2)) + 𝜉5(𝛽3𝑌ℎ(𝑡)))
 

(16) 

𝜉5̇ = − ((−𝜉1(𝛽2𝑋ℎ(𝑡))) + 𝜉2(𝛽2𝑋ℎ(𝑡)) − 𝜉5(𝜇1 + 𝑢2))
 

(17) 

considering final-time constraints or transversality 

𝜉𝑘(𝑡𝑒𝑛𝑑) = 0, 𝑘 = 𝑋ℎ, 𝑌ℎ, 𝑅ℎ, 𝑋𝑣, 𝑌𝑣,
 

(18) 

and characterizations for optimal control 

𝑢1
∗ = 𝑚𝑖𝑛 {1, 𝑚𝑎𝑥 {0,

((𝜉1𝑋ℎ(𝑡))−𝜉3𝑋ℎ(𝑡))

𝐴3
 }}

 
(19) 

𝑢2
∗ = 𝑚𝑖𝑛 {1, 𝑚𝑎𝑥 {0,

((𝜉4𝑋𝑣(𝑡))−𝜉5𝑌𝑣(𝑡))

𝐴4
 }}

 
(20) 

Proof. The adjoint system is generated by partial differentiating the Hamiltonian 
(12) with respect to each of 𝑋ℎ, 𝑌ℎ, 𝑅ℎ, 𝑋𝑣, 𝑌𝑣 (13)-(17). Additionally, the two optimal 
controls are characterized by solving as follows: 

𝜕𝐻

𝜕𝑢1
= 0;

 
(21) 

𝑢1 =
((𝜉1𝑋ℎ(𝑡))−𝜉3𝑋ℎ(𝑡))

𝐴3
 

(22) 

𝜕𝐻

𝜕𝑢2
= 0;

 
(23) 

𝑢2 =
((𝜉4𝑋𝑣(𝑡))−𝜉5𝑌𝑣(𝑡))

𝐴4
.  ∎

 
(24) 
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4 NUMERICAL SIMULATION AND DISCUSSION 

The outcomes of simulations on the dengue disease mathematical model with and 
without optimal control are shown in Figure 1 and the values of the parameters used are 
presented in table 1.  

Table 1 Description and Value of the Parameters 

Notation Parameters Description Value 

𝛾1 Infected population's rate of recovery 0.8 

𝛽3 

The proportion of infected mosquitoes that 
bite the general public without being 

infected 

0.02 

𝛽2 
Rate of exposure to non-infected 
mosquitoes by infected people 

0.002 

𝛽1 
The frequency of contact between infected 

and uninfected people 
0.015 

𝜇2 The disease's mortality rate 0.02 

𝜇1 Rate of deaths caused by mosquitoes 0.1 

𝜇0 Death rates among people 0.1 

𝜆 Birth rate of mosquitoes 2 

Λ Rate of births among people 2.8 
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a

 

Figure 1: Simulations of (𝑋ℎ, 𝑌ℎ, 𝑅ℎ, 𝑋𝑣, 𝑌𝑣) with and without optimal control 

 
Prior to receiving optimal control at the start of the simulation, state 𝑋ℎ shown a 

drop, but after day 5 it underwent a large increase up until the end of the observations 
made. The population suffered a large decline on the first and second days after receiving 
optimal control; however, after the decrease, the population remained stable until day 
100. State 𝑌ℎ, before and after being provided optimal control at the start of the simulation, 
suffered a large decline, which on the days then also experienced a minor decrease but 
headed to 0 until the end of the observation. The deterioration accelerated slightly more 
quickly after receiving control than it had earlier. When given optimal control, the 
behavior of the obtained graph in the population of recovered individuals remained 
constant. However, after receiving optimal management, the increase was more 
noticeable. Before being given control, it did rise at the start of the observation, but 
around day 10, it started to fall until it reached zero, showing that there was no 
population of recovered persons at the end of the experiment. Following the application 
of optimal control, it climbed following the first observation. Subsequently, it also 
declined, but this decline was not substantial and did not reach 0. In state 𝑋𝑣, after 
receiving optimal control, the vector population, or mosquito population, initially 
showed a more pronounced decline at the beginning of the observation, albeit on the 
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following days there was a modest increase that remained steady until the end of the 
observation. Prior to the tenth day, the last state or 𝑌𝑣 vector population grew at the start 
of the observation before decreasing. The graph reaches zero more quickly than it would 
have otherwise when control is given because the drop is more noticeable when optimal 
control is applied. 

 
5 CONCLUSION 

In this research, a methodical analysis of the dynamics of a two-strain Dengue fever 
model with vector control and awareness of sensitive humans is presented. A variety of 
anti-Dengue preventive measures can be evaluated using the model, which incorporates 
key aspects of Dengue fever transmission. The number of infected people can be lowered, 
according to numerical simulations, by using awareness-raising tactics for protecting 
vulnerable people personally and controlling vectors. The Figure 1 illustrates how, 
following the application of the control, there were fewer susceptible people, infected 
people, and mosquito populations in the two populations that were taken into 
consideration. There was a noticeable increase in the population of patients who made a 
full recovery after receiving control. So taking the two strategies, it was concluded that 
they were able to prevent transmission of dengue fever in humans and mosquitoes as 
host and vector control of the mathematical model of dengue fever, and the control 
provided could work well on the mathematical model of dengue fever. Based on the 
mechanism of transmission of the dengue virus, reducing the access of mosquitoes to the 
dengue virus is very important to prevent transmission of the disease itself. 
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